Seaweed allelopathy degrades the resilience and function of coral reefs.
نویسندگان
چکیده
Coral reefs are in dramatic global decline due to a host of local- and global-scale anthropogenic disturbances that suppress corals and enhance seaweeds. This decline is exacerbated, and recovery made less likely, due to over-fishing of herbivores that normally limit seaweed effects on corals. Seaweeds were known to suppress coral reproduction and recruitment, but in a recent study, we demonstrated that numerous seaweeds also directly poison corals via lipid-soluble allelochemicals transferred during contact. These allelopathic interactions may limit reef recovery once seaweeds proliferate and commonly contact remaining corals. Other recent studies suggest that seaweeds may also damage corals by enhancing coral disease or via release of water-soluble compounds that stimulate damaging microbes. For some of these mechanisms, cause versus effect is not yet clear. Here, we suggest that these different mechanisms are not mutually exclusive, may interact in context-dependent ways, but need to be assessed under ecologically realistic field conditions where flow may limit impacts of some mechanisms.
منابع مشابه
Seaweed-Coral Interactions: Variance in Seaweed Allelopathy, Coral Susceptibility, and Potential Effects on Coral Resilience
Tropical reefs are in global decline with seaweeds commonly replacing corals. Negative associations between macroalgae and corals are well documented, but the mechanisms involved, the dynamics of the interactions, and variance in effects of different macroalgal-coral pairings are poorly investigated. We assessed the frequency, magnitude, and dynamics of macroalgal-coral competition involving al...
متن کاملEffects of ocean acidification on the potency of macroalgal allelopathy to a common coral
Many coral reefs have phase shifted from coral to macroalgal dominance. Ocean acidification (OA) due to elevated CO2 is hypothesised to advantage macroalgae over corals, contributing to these shifts, but the mechanisms affecting coral-macroalgal interactions under OA are unknown. Here, we show that (i) three common macroalgae are more damaging to a common coral when they compete under CO2 conce...
متن کاملCompetition induces allelopathy but suppresses growth and anti-herbivore defence in a chemically rich seaweed.
Many seaweeds and terrestrial plants induce chemical defences in response to herbivory, but whether they induce chemical defences against competitors (allelopathy) remains poorly understood. We evaluated whether two tropical seaweeds induce allelopathy in response to competition with a reef-building coral. We also assessed the effects of competition on seaweed growth and seaweed chemical defenc...
متن کاملDoom and Boom on a Resilient Reef: Climate Change, Algal Overgrowth and Coral Recovery
BACKGROUND Coral reefs around the world are experiencing large-scale degradation, largely due to global climate change, overfishing, diseases and eutrophication. Climate change models suggest increasing frequency and severity of warming-induced coral bleaching events, with consequent increases in coral mortality and algal overgrowth. Critically, the recovery of damaged reefs will depend on the ...
متن کاملChemically mediated interactions between macroalgae Dictyota spp. and multiple life-history stages of the coral Porites astreoides
Competition between corals and macroalgae is often assumed to occur on reefs, especially those that have undergone shifts from coral to algal dominance; however, data examining these competitive interactions, especially during the early life-history stages of corals, are scarce. We conducted a series of field and outdoor seawater-table experiments to test the hypothesis that allelopathy (chemic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Communicative & integrative biology
دوره 3 6 شماره
صفحات -
تاریخ انتشار 2010